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I. SUPERCONDUCTORS IN A MAGNETIC FIELD - Hc2 AND VORTICES

We explore how superconductivity nucleates in a strong magnetic field.

A. Linearized GL Equation

We consider the onset of superconductivity for T < Tc in a strong magnetic field as the field is reduced.
We look for the onset of superconductivity under this demanding situation in which |ψ|2 << |ψ∞|2. In
this case we can neglect the ψ|ψ|2 term in the GL equation to linearize it:
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The expression for the current density J⃗ = e∗
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decouples from the linearlized GL

equation if we assume that the total vector potential A⃗ has contributions from the external vector po-
tential only. In other words the order parameter is so weak that we can neglect the screening produced
by the superconductor.

The linearized GL equation is a Schrodinger equation with eigenvalue ϵ = −α. There will be an infinite
number of such eigenvalues, which correspond to temperatures,

ϵj = −αj = α′(1− Tj

Tc
) = α′(1−tj). The smallest eigenvalue will correspond to the largest temperature for

a solution, tj = 1− ϵj
α′ . This will result in the prediction of the superconductor/normal phase boundary.

B. Calculation of Hc2 in a Bulk Superconductor

Consider an infinite superconductor in a strong external magnetic field H⃗ = Hẑ. This can be rep-

resented with the vector potential A⃗ = µ0Hxŷ. Put this choice of A⃗ into the linearized GL equation,
divide through by ψ∞ to form f = ψ/ψ∞, square the operator and ignore any variation of the order
parameter in the direction of the magnetic field (z) to obtain,
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Taking H = 0 yields the simple solution f(x, y) = eikxxeikyy which has uniform magnitude. This
suggests the following ansatz for the full equation:
f(x, y) = g(x)eiky, where k will be determined later.

Substituting this yields the following second order differential equation for g(x),
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where the “spring constant” is ks ≡ (e∗µ0H)2
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This is the Schrodinger equation for a one-dimensional harmonic oscillator centered on x = x0 with

eigenvalues ϵn = (n+ 1
2 )~ω (n = 0, 1, 2, ...) with ω =

√
ks
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phase boundary in magnetic field where superconductivity first nucleates. The lowest energy eigenvalue
of the Schrodinger equation corresponds to the highest magnetic field that supports a non-zero order
parameter.
Solving for the magnetic field at the phase boundary (for a given T < Tc) yields,
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Hc2(T ) represents the highest field at which superconductivity can nucleate for a given T < Tc. Note
that as T → Tc, ξGL diverges and Hc2 goes to zero. From the temperature dependence of ξGL we see
that near Tc one has Hc2(T ) ∼ 1 − t. Thus from the linear slope of Hc2(T ) at Tc one can deduce the
extrapolated zero-temperature GL coherence length. This method is very commonly used by experi-
mentalists to determine the coherence length of superconductors.

One can re-write Hc2(T ) in various forms using other GL quantities as follows:
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c ,
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This last expression shows that Hc2 > Hc for type-II superconductors (κ > 1/
√
2), and Hc2 < Hc for

type-I superconductors (κ < 1/
√
2). As an example, consider the cuprate superconductor YBCO which

has µ0Hc(0) ∼ 1T and κ ∼ 60. It’s upper critical field µ0Hc2(0) ∼ 85T .

Imagine a superconductor in a large magnetic field at T < Tc such that it is a normal conductor.
The magnetic field is now reduced and we examine the evolution of the GL order parameter. For a
type-II superconductor the GL order parameter is zero until we reach H = Hc2 and then it increases
continuously as the field is reduced (characteristic of a second order phase transition). This process is
reversible and non-hysteretic. Nothing special happens as H is reduced through Hc.
For a type-I superconductor one goes through H = Hc and the order parameter remains zero. Only
when the field is reduced to the lower value of H = Hc2 does superconductivity nucleate and the order
parameter suddenly jumps up to its equilibrium value at that temperature and field. This super-cooling
process means the superconductor is out of equilibrium. If the field is now increased, the order parameter
remains large until the thermodynamic critical field Hc is reached, at which point the order parameter
is discontinuously reduced to zero in a first-order transition. The entire cycle is an open hysterisis loop,
characteristic of first-order phase transitions.

II. ORDER PARAMETER SOLUTION

We found the first nucleation field for superconductivity in a strong magnetic field for T < Tc as
Hc2 =

√
2κHc.

We took solutions to the linearized GL equation of the form,
f(x, y) = g(x)eiky.
Hc2 is the first non-trivial solution to the 1D differential equation:
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The eigenfunction for g(x) is the ground state of the harmonic oscillator, with full solutions of the
form,

f(x, y; k) = eikye−(x−xk)
2/2ξ2GL , with xk ≡ Φ0k

2πµ0H
.

This represents an infinite number of degenerate solutions, labeled by the parameter k.

We expect a set of solutions that are periodic in space. This can be accomplished by making k an
integer multiple of a basic wavenumber q as k = nq, with n = 0,±1,±2, .... Now the centers of the
Gaussians are also periodic in space with xn = Φ0nq

2πµ0H
.

The y-solution is periodic with period ∆y = 2π/q and the x-solution has period ∆x = Φ0q
2πµ0H

. The area

of a unit cell is therefore ∆x∆y = Φ0

µ0H
, showing that exactly one flux quantum is confined in each unit

cell. This is the ultimate limit imposed by quantum mechanics when the energy per unit area of an S/N
interface is negative. The vortex lattice is the result of the proliferation of negative energy interfaces,
arrested only by fluxoid quantization.
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III. VORTEX LATTICE SOLUTIONS

The general solution for ψ(x, y) comes from a linear superposition of all of the above solutions (recall
that we linearized the GL equation, so linear superposition now holds):

ψ(x, y) =
∑
n Cne

inqye−(x−xn)
2/2ξ2GL . If Cn is periodic in n then ψ is also periodic in space.

The two common solutions are the square lattice (obtained when Cn = C0 for all n), and the triangular
lattice (obtained when C1 = iC0 and Cn+2 = Cn for all n). The true minimum energy solution is found
from the full nonlinear GL theory by minimizing the free-energy difference,

⟨fs − fn⟩ = −α2

2β
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, with

βA ≡ ⟨|ψ|4⟩
⟨|ψ|2⟩2 , as derived by Abrikosov. Hence we seek the minimum value of βA. A uniform solution

has βA = 1. One finds that the square lattice has βA = 1.18 while the triangular lattice has βA = 1.16,
just slightly lower. The class web site shows these solutions for ψ(x, y) as well as many experimental
techniques to image the vortex lattice. Some techniques (STM) measure the local density of states at
the Fermi energy, which is enhanced in the vortex core due to the suppressed order parameter. Bitter
decoration images the magnetic field concentration near the vortex cores. Lorentz microscopy magneto-
optic imaging, SQUID and magnetic force microscopy methods all image the magnetic field profiles.

Note that we have assumed the superconductor does no screening, hence to this first approximation
the magnetic field is homogeneous in the superconductor. One can see that the length scale λeff plays
no role in the solution for ψ(x, y), which is a consequence of ignoring the screening.


